

Galactic Cosmic Rays variations which are not clearly related with heliospheric structures

Eduardo Tirado-Bueno *

* Postgraduate Program in Space Science & Technology National Institute of Astrophysics Optics and Electronics

J. Eduardo Mendoza-Torres¹ and Carlos R. Braga²

¹ National Institute of Astrophysics Optics and Electronics
² The Johns Hopkins University, Applied Physics Laboratory

CONAHCYT CONSEDO NACIONAL DE HUMANIDADES CIENCIAS Y TECNOLOGIAS

What are Cosmic Rays, and how do we detect them?

- Cosmic rays are high-energy particles from outer space.
- About 1000 cosmic rays per second strike each square meter area of Earth's atmosphere.
 - Cosmic rays are produced in our galaxy by supernova explosions.
 - CMEs and HSSs modulate the cosmic ray intensity, and they're a proxy for the magnetic fields and density

Ground-based detectors measure byproducts of the interaction of primary cosmic rays (predominantly protons and helium nuclei) with Earth's atmosphere.

Neutron monitor:

Typical energy of primary CR:

- ~ 1 GeV for solar cosmic rays.
- ~ 10 GeV for galactic cosmic rays.

Cosmic ray variations

- A. First coronal mass ejection (CME) at Sun.
- B. First, CME arrives on Earth. Cosmic rays decrease suddenly a "Forbush Decrease".
- C. Second CME at Sun. This one accelerates highenergy particles that reach Earth minutes later. The sudden increase recorded by the neutron monitor is a "*Ground-level enhancement*".
- D. Second CME arrives at Earth. Cosmic rays decrease again. This CME produces the largest geomagnetic storm in years.

John W. Bieber, University of Delaware, Bartol Research Institute.

Forbush Decrease

- The Forbush effect is a temporary decrease in the intensity of cosmic rays that reach the Earth's atmosphere.
- The Forbush decrease occurs when a large eruption of solar material, known as coronal mass ejection (CME), occurs from the Sun. The CME can create a shock wave in the solar wind, a stream of charged particles flowing from the Sun. This shock wave can cause the Earth's magnetic field to become more efficient at blocking cosmic rays from entering the Earth's atmosphere.
- As a result, the intensity of cosmic rays reaching the Earth's atmosphere decreases <u>temporarily</u>. The Forbush decrease can last <u>for a few days to a few</u> <u>weeks</u>, depending on the strength of the CME.

Solar wind structures and depressions in the intensity of cosmic rays

+ information: Dumbović, M., Vršnak, B., Čalogović, J., and Župan, R.: 2012, Astron. Astrophys. 538, A28.

COR2-A

Remote observation

Heliospheric Imagers allow us to observe the region between the Sun and Earth in a manner that was never followed by imaging cameras continuously, allowing us to determine enhancements in density observed by heliospheric imagers that may explain cosmic ray decreases.

In-situ measurements

M. Dumbović et.al. (2012)

Thomas, et.al. (2015)

CMEs lead to disturbances in the solar wind and IMF.

Solar wind and IMF modulate GCR flux.

(degree)

5

15 10 °

600 ^[S]

원 500 ~

"Phantom" Forbush

CMEs are widely accepted as a source of transient modulations in the galactic cosmic ray intensity, known as Forbush Decreases.

- Occasionally, Forbush decreases occur for which there is no readily associated solar wind structure in near-Earth space, the so-called Phantom Forbush (PFDs).
- STEREO-A (B) can identify large solar wind structures responsible for such structures using heliospheric imagers.
- STEREO allows observations from well-located points in the inner heliosphere to identify pre-existing heliospheric structures to create a magnetic barrier to modulate galactic cosmic rays.

+ information: Thomas, et.al. (2015)

Forbush Effects and Interplanetary disturbances

Date of Interplanetary Disturbance	Type of Interplanetary Disturbance
2008-01-04 22:50:00	(ICME) Interplanetary Coronal Mass Ejection
2008-01-12 07:00:00 not SIR Observed by STEREO-A or WIND	SIR Observed by STEREO-B
2008-01-25 01:00:00	(HSS) High-speed solar stream
2008-01-31 11:23:00	HSS1 (the first HSS from CHs in the interacting HSS1 + HSS2)
2008-02-01 08:00:00	HSS2 (the second HSS from CHs in the interacting HSS1 + HSS2)

And more events ...

In 2008, we had 42depression not associated with a heliospheric structure in GCR flux observed by NMs.

For example, in 2008 (**80** Interplanetary disturbances were observed by NMs) > High-Speed Streams (HSS)

Preliminary results

Neutron Monitor Data

20080108 STEREO-B

Summary

- Only the images from HIs observations can identify this structure candidate (a SIR), which is not observed in situ by any of the other 2 missions available (STEREO-A or WIND).
- Remote sensing of heliospheric structures using STEREO Heliospheric Imagers during Forbush Decreases and GCR depressions.
- Features in the GCR can be closely related to structures in the local solar wind observed by spacecraft observations.
- Give a more global view of the physical mechanism of Forbush Decreases or GCR depressions.

Thanks for your attention !

Contact Information:

etirado@inaoe.mx

https://etiradob-phys.github.io/etirado.github.io/